Notes on commutative parasemifields
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 521-533
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Parasemifields (i.e., commutative semirings whose multiplicative semigroups are groups) are considered in more detail. We show that if a parasemifield $S$ contains $\Bbb Q^+$ as a subparasemifield and is generated by $\Bbb Q^{+}\cup \{a\}$, $a\in S$, as a semiring, then $S$ is (as a semiring) not finitely generated.
Parasemifields (i.e., commutative semirings whose multiplicative semigroups are groups) are considered in more detail. We show that if a parasemifield $S$ contains $\Bbb Q^+$ as a subparasemifield and is generated by $\Bbb Q^{+}\cup \{a\}$, $a\in S$, as a semiring, then $S$ is (as a semiring) not finitely generated.
@article{CMUC_2009_50_4_a2,
author = {Kala, V{\'\i}t\v{e}zslav and Kepka, Tom\'a\v{s} and Korbel\'a\v{r}, Miroslav},
title = {Notes on commutative parasemifields},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {521--533},
year = {2009},
volume = {50},
number = {4},
mrnumber = {2583130},
zbl = {1203.16038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a2/}
}
TY - JOUR AU - Kala, Vítězslav AU - Kepka, Tomáš AU - Korbelář, Miroslav TI - Notes on commutative parasemifields JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 521 EP - 533 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a2/ LA - en ID - CMUC_2009_50_4_a2 ER -
Kala, Vítězslav; Kepka, Tomáš; Korbelář, Miroslav. Notes on commutative parasemifields. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 521-533. http://geodesic.mathdoc.fr/item/CMUC_2009_50_4_a2/