Weyl quantization for the semidirect product of a compact Lie group and a vector space
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 325-347
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $G$ be the semidirect product $V\rtimes K$ where $K$ is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\mathcal O$ be a coadjoint orbit of $G$ associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation $\pi$ of $G$. We consider the case when the corresponding little group $H$ is the centralizer of a torus of $K$. By dequantizing a suitable realization of $\pi$ on a Hilbert space of functions on ${\mathbb C}^n$ where $n=\dim (K/H)$, we construct a symplectomorphism between a dense open subset of ${\mathcal O}$ and the symplectic product ${\mathbb C}^{2n}\times {\mathcal O}'$ where ${\mathcal O}'$ is a coadjoint orbit of $H$. This allows us to obtain a Weyl correspondence on ${\mathcal O}$ which is adapted to the representation $\pi$ in the sense of [B. Cahen, Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803--806].
Let $G$ be the semidirect product $V\rtimes K$ where $K$ is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\mathcal O$ be a coadjoint orbit of $G$ associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation $\pi$ of $G$. We consider the case when the corresponding little group $H$ is the centralizer of a torus of $K$. By dequantizing a suitable realization of $\pi$ on a Hilbert space of functions on ${\mathbb C}^n$ where $n=\dim (K/H)$, we construct a symplectomorphism between a dense open subset of ${\mathcal O}$ and the symplectic product ${\mathbb C}^{2n}\times {\mathcal O}'$ where ${\mathcal O}'$ is a coadjoint orbit of $H$. This allows us to obtain a Weyl correspondence on ${\mathcal O}$ which is adapted to the representation $\pi$ in the sense of [B. Cahen, Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803--806].
Classification :
22E46, 22E99, 32M10, 81S10
Keywords: Weyl quantization; Berezin quantization; semidirect product; coadjoint orbits; unitary representations
Keywords: Weyl quantization; Berezin quantization; semidirect product; coadjoint orbits; unitary representations
@article{CMUC_2009_50_3_a1,
author = {Cahen, Benjamin},
title = {Weyl quantization for the semidirect product of a compact {Lie} group and a vector space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {325--347},
year = {2009},
volume = {50},
number = {3},
mrnumber = {2573408},
zbl = {1212.81015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_3_a1/}
}
TY - JOUR AU - Cahen, Benjamin TI - Weyl quantization for the semidirect product of a compact Lie group and a vector space JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 325 EP - 347 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2009_50_3_a1/ LA - en ID - CMUC_2009_50_3_a1 ER -
Cahen, Benjamin. Weyl quantization for the semidirect product of a compact Lie group and a vector space. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 325-347. http://geodesic.mathdoc.fr/item/CMUC_2009_50_3_a1/