Interpolation of $\kappa$-compactness and PCF
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 315-320
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We call a topological space $\kappa$-compact if every subset of size $\kappa$ has a complete accumulation point in it. Let $\Phi(\mu,\kappa,\lambda)$ denote the following statement: $\mu \kappa \lambda = \operatorname{cf} (\lambda)$ and there is $\{ S_\xi : \xi \lambda \} \subset [\kappa]^\mu$ such that $|\{ \xi : |S_\xi \cap A| = \mu \}| \lambda$ whenever $A \in [\kappa]^{\kappa}$. We show that if $\Phi(\mu,\kappa,\lambda)$ holds and the space $X$ is both $\mu$-compact and $\lambda$-compact then $X$ is $\kappa$-compact as well. Moreover, from PCF theory we deduce $\Phi(\operatorname{cf} (\kappa), \kappa, \kappa^+)$ for every singular cardinal $\kappa$. As a corollary we get that a linearly Lindelöf and $\aleph_\omega$-compact space is uncountably compact, that is $\kappa$-compact for all uncountable cardinals $\kappa$.
We call a topological space $\kappa$-compact if every subset of size $\kappa$ has a complete accumulation point in it. Let $\Phi(\mu,\kappa,\lambda)$ denote the following statement: $\mu \kappa \lambda = \operatorname{cf} (\lambda)$ and there is $\{ S_\xi : \xi \lambda \} \subset [\kappa]^\mu$ such that $|\{ \xi : |S_\xi \cap A| = \mu \}| \lambda$ whenever $A \in [\kappa]^{\kappa}$. We show that if $\Phi(\mu,\kappa,\lambda)$ holds and the space $X$ is both $\mu$-compact and $\lambda$-compact then $X$ is $\kappa$-compact as well. Moreover, from PCF theory we deduce $\Phi(\operatorname{cf} (\kappa), \kappa, \kappa^+)$ for every singular cardinal $\kappa$. As a corollary we get that a linearly Lindelöf and $\aleph_\omega$-compact space is uncountably compact, that is $\kappa$-compact for all uncountable cardinals $\kappa$.
Classification :
03E04, 54A25, 54D30
Keywords: complete accumulation point; $\kappa$-compact space; linearly Lindelöf space; PCF theory
Keywords: complete accumulation point; $\kappa$-compact space; linearly Lindelöf space; PCF theory
@article{CMUC_2009_50_2_a10,
author = {Juh\'asz, Istv\'an and Szentmikl\'ossy, Zolt\'an},
title = {Interpolation of $\kappa$-compactness and {PCF}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {315--320},
year = {2009},
volume = {50},
number = {2},
mrnumber = {2537839},
zbl = {1212.03029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_2_a10/}
}
TY - JOUR AU - Juhász, István AU - Szentmiklóssy, Zoltán TI - Interpolation of $\kappa$-compactness and PCF JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 315 EP - 320 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2009_50_2_a10/ LA - en ID - CMUC_2009_50_2_a10 ER -
Juhász, István; Szentmiklóssy, Zoltán. Interpolation of $\kappa$-compactness and PCF. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/CMUC_2009_50_2_a10/