A universal property of $C_0$-semigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 83-88
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $T:[0, \infty) \to L(E)$ be a $C_0$-semigroup with unbounded generator $A:D(A)\to E$. We prove that $(T(t)x-x)/t$ has generically a very irregular behaviour for $x\notin D(A)$ as $t \to 0+$.
Let $T:[0, \infty) \to L(E)$ be a $C_0$-semigroup with unbounded generator $A:D(A)\to E$. We prove that $(T(t)x-x)/t$ has generically a very irregular behaviour for $x\notin D(A)$ as $t \to 0+$.
@article{CMUC_2009_50_1_a6,
author = {Herzog, Gerd and Schmoeger, Christoph},
title = {A universal property of $C_0$-semigroups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {83--88},
year = {2009},
volume = {50},
number = {1},
mrnumber = {2562805},
zbl = {1212.47018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_1_a6/}
}
Herzog, Gerd; Schmoeger, Christoph. A universal property of $C_0$-semigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 83-88. http://geodesic.mathdoc.fr/item/CMUC_2009_50_1_a6/