Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 37-60
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0({J},\omega,\Bbb K))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0({J},\omega,\Bbb K))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
Classification :
12G25, 26E30, 46S10, 47S10
Keywords: non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus
Keywords: non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus
@article{CMUC_2009_50_1_a3,
author = {Attimu, Dodzi and Diagana, Toka},
title = {Functional calculus for a class of unbounded linear operators on some non-archimedean {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {37--60},
year = {2009},
volume = {50},
number = {1},
mrnumber = {2562802},
zbl = {1212.47125},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009_50_1_a3/}
}
TY - JOUR AU - Attimu, Dodzi AU - Diagana, Toka TI - Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 37 EP - 60 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_2009_50_1_a3/ LA - en ID - CMUC_2009_50_1_a3 ER -
%0 Journal Article %A Attimu, Dodzi %A Diagana, Toka %T Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2009 %P 37-60 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_2009_50_1_a3/ %G en %F CMUC_2009_50_1_a3
Attimu, Dodzi; Diagana, Toka. Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/CMUC_2009_50_1_a3/