Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 463-475 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper concerns the study of the numerical approximation for the following boundary value problem: $$ \cases u_t(x,t)-u_{xx}(x,t) = -u^{-p}(x,t), 00, \ u_{x}(0,t)=0, u(1,t)=1, t>0, \ u(x,0)=u_{0}(x)>0, 0\leq x \leq 1, \endcases $$ where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
This paper concerns the study of the numerical approximation for the following boundary value problem: $$ \cases u_t(x,t)-u_{xx}(x,t) = -u^{-p}(x,t), 01, t>0, \ u_{x}(0,t)=0, u(1,t)=1, t>0, \ u(x,0)=u_{0}(x)>0, 0\leq x \leq 1, \endcases $$ where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
Classification : 35B40, 35K20, 35K55, 35K91, 65M06
Keywords: semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence
@article{CMUC_2008_49_3_a7,
     author = {Nabongo, Diabate and Boni, Th\'eodore K.},
     title = {Quenching for semidiscretizations of a semilinear heat equation with {Dirichlet} and {Neumann} boundary conditions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {463--475},
     year = {2008},
     volume = {49},
     number = {3},
     mrnumber = {2490440},
     zbl = {1212.35217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a7/}
}
TY  - JOUR
AU  - Nabongo, Diabate
AU  - Boni, Théodore K.
TI  - Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 463
EP  - 475
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a7/
LA  - en
ID  - CMUC_2008_49_3_a7
ER  - 
%0 Journal Article
%A Nabongo, Diabate
%A Boni, Théodore K.
%T Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 463-475
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a7/
%G en
%F CMUC_2008_49_3_a7
Nabongo, Diabate; Boni, Théodore K. Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 463-475. http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a7/