Spectrum of twisted Dirac operators on the complex projective space $\Bbb P^{2q+1}(\Bbb C)$
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 437-445
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\Bbb P^{2q+1}(\Bbb C)$ for $q\geq 1$.
In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\Bbb P^{2q+1}(\Bbb C)$ for $q\geq 1$.
Classification :
53C27, 53C35, 58C40, 58J50
Keywords: complex projective space; Dirac operator; spectral theory
Keywords: complex projective space; Dirac operator; spectral theory
@article{CMUC_2008_49_3_a5,
author = {Halima, Majdi Ben},
title = {Spectrum of twisted {Dirac} operators on the complex projective space $\Bbb P^{2q+1}(\Bbb C)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {437--445},
year = {2008},
volume = {49},
number = {3},
mrnumber = {2490438},
zbl = {1212.53072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a5/}
}
TY - JOUR
AU - Halima, Majdi Ben
TI - Spectrum of twisted Dirac operators on the complex projective space $\Bbb P^{2q+1}(\Bbb C)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
SP - 437
EP - 445
VL - 49
IS - 3
UR - http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a5/
LA - en
ID - CMUC_2008_49_3_a5
ER -
%0 Journal Article
%A Halima, Majdi Ben
%T Spectrum of twisted Dirac operators on the complex projective space $\Bbb P^{2q+1}(\Bbb C)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 437-445
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a5/
%G en
%F CMUC_2008_49_3_a5
Halima, Majdi Ben. Spectrum of twisted Dirac operators on the complex projective space $\Bbb P^{2q+1}(\Bbb C)$. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 437-445. http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a5/