Affine regular decagons in GS-quasigroup
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 383-395
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this article the ``geometric'' concept of the affine regular decagon in a general GS--quasigroup is introduced. The relationships between affine regular decagon and some other geometric concepts in a general GS--quasigroup are explored. The geometrical presentation of all proved statements is given in the GS--quasigroup $\Bbb C(\frac{1}{2}(1+\sqrt{5}))$.
In this article the ``geometric'' concept of the affine regular decagon in a general GS--quasigroup is introduced. The relationships between affine regular decagon and some other geometric concepts in a general GS--quasigroup are explored. The geometrical presentation of all proved statements is given in the GS--quasigroup $\Bbb C(\frac{1}{2}(1+\sqrt{5}))$.
Classification :
20N05
Keywords: GS-quasigroup; affine regular decagon; affine regular pentagon
Keywords: GS-quasigroup; affine regular decagon; affine regular pentagon
@article{CMUC_2008_49_3_a1,
author = {Volenec, V. and Kolar-Begovi\'c, Z.},
title = {Affine regular decagons in {GS-quasigroup}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {383--395},
year = {2008},
volume = {49},
number = {3},
mrnumber = {2490434},
zbl = {1192.20054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a1/}
}
Volenec, V.; Kolar-Begović, Z. Affine regular decagons in GS-quasigroup. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/CMUC_2008_49_3_a1/