On central nilpotency in finite loops with nilpotent inner mapping groups
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 271-277
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group $I(Q)$ of a loop $Q$ is the direct product of a dihedral group of order $8$ and an abelian group. Our second result deals with the case where $Q$ is a $2$-loop and $I(Q)$ is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that $Q$ is centrally nilpotent.
In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group $I(Q)$ of a loop $Q$ is the direct product of a dihedral group of order $8$ and an abelian group. Our second result deals with the case where $Q$ is a $2$-loop and $I(Q)$ is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that $Q$ is centrally nilpotent.
@article{CMUC_2008_49_2_a8,
author = {Niemenmaa, Markku and Rytty, Miikka},
title = {On central nilpotency in finite loops with nilpotent inner mapping groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {271--277},
year = {2008},
volume = {49},
number = {2},
mrnumber = {2426891},
zbl = {1192.20057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a8/}
}
TY - JOUR AU - Niemenmaa, Markku AU - Rytty, Miikka TI - On central nilpotency in finite loops with nilpotent inner mapping groups JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 271 EP - 277 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a8/ LA - en ID - CMUC_2008_49_2_a8 ER -
Niemenmaa, Markku; Rytty, Miikka. On central nilpotency in finite loops with nilpotent inner mapping groups. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 271-277. http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a8/