F-quasigroups and generalized modules
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 249-257
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In Kepka T., Kinyon M.K., Phillips J.D., {\it The structure of F-quasigroups\/}, J. Algebra {\bf 317} (2007), 435--461, we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the class of (pointed) F-quasigroups and the class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.
In Kepka T., Kinyon M.K., Phillips J.D., {\it The structure of F-quasigroups\/}, J. Algebra {\bf 317} (2007), 435--461, we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the class of (pointed) F-quasigroups and the class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.
Classification :
16Y99, 17A30, 20N05
Keywords: F-quasigroup; Moufang loop; generalized modules
Keywords: F-quasigroup; Moufang loop; generalized modules
@article{CMUC_2008_49_2_a6,
author = {Kepka, Tom\'a\v{s} and Kinyon, Michael K. and Phillips, J. D.},
title = {F-quasigroups and generalized modules},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {249--257},
year = {2008},
volume = {49},
number = {2},
mrnumber = {2426889},
zbl = {1192.20055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a6/}
}
TY - JOUR AU - Kepka, Tomáš AU - Kinyon, Michael K. AU - Phillips, J. D. TI - F-quasigroups and generalized modules JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 249 EP - 257 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a6/ LA - en ID - CMUC_2008_49_2_a6 ER -
Kepka, Tomáš; Kinyon, Michael K.; Phillips, J. D. F-quasigroups and generalized modules. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 249-257. http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a6/