Edon-$\Cal R (256,384,512)$ -- an efficient implementation of Edon-$\Cal R$ family of cryptographic hash functions
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 219-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We have designed three fast implementations of a recently proposed family of hash functions Edon--$\Cal R$. They produce message digests of length $n=256, 384, 512$ bits and project security of $2^{\frac{n}{2}}$ hash computations for finding collisions and $2^{n}$ hash computations for finding preimages and second preimages. The design is not the classical Merkle-Damg\aa rd but can be seen as wide-pipe iterated compression function. Moreover the design is based on using huge quasigroups of orders $2^{256}$, $2^{384}$ and $2^{512}$ that are constructed by using only bitwise operations on 32 bit values (additions modulo $2^{32}$, XORs and left rotations). Initial Reference C code achieves processing speeds of 16.18 cycles/byte, 24.37 cycles/byte and 32.18 cycles/byte on x86 (Intel and AMD microprocessors). In this paper we give their full description, as well as an initial security analysis.
We have designed three fast implementations of a recently proposed family of hash functions Edon--$\Cal R$. They produce message digests of length $n=256, 384, 512$ bits and project security of $2^{\frac{n}{2}}$ hash computations for finding collisions and $2^{n}$ hash computations for finding preimages and second preimages. The design is not the classical Merkle-Damg\aa rd but can be seen as wide-pipe iterated compression function. Moreover the design is based on using huge quasigroups of orders $2^{256}$, $2^{384}$ and $2^{512}$ that are constructed by using only bitwise operations on 32 bit values (additions modulo $2^{32}$, XORs and left rotations). Initial Reference C code achieves processing speeds of 16.18 cycles/byte, 24.37 cycles/byte and 32.18 cycles/byte on x86 (Intel and AMD microprocessors). In this paper we give their full description, as well as an initial security analysis.
Classification :
05B05, 20N05, 68P30, 94A60
Keywords: hash function; Edon--${\Cal R}$; quasigroup
Keywords: hash function; Edon--${\Cal R}$; quasigroup
@article{CMUC_2008_49_2_a4,
author = {Gligoroski, Danilo and Knapskog, Svein Johan},
title = {Edon-$\Cal R (256,384,512)$ -- an efficient implementation of {Edon-}$\Cal R$ family of cryptographic hash functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {219--239},
year = {2008},
volume = {49},
number = {2},
mrnumber = {2426887},
zbl = {1201.94084},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a4/}
}
TY - JOUR AU - Gligoroski, Danilo AU - Knapskog, Svein Johan TI - Edon-$\Cal R (256,384,512)$ -- an efficient implementation of Edon-$\Cal R$ family of cryptographic hash functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 219 EP - 239 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a4/ LA - en ID - CMUC_2008_49_2_a4 ER -
%0 Journal Article %A Gligoroski, Danilo %A Knapskog, Svein Johan %T Edon-$\Cal R (256,384,512)$ -- an efficient implementation of Edon-$\Cal R$ family of cryptographic hash functions %J Commentationes Mathematicae Universitatis Carolinae %D 2008 %P 219-239 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a4/ %G en %F CMUC_2008_49_2_a4
Gligoroski, Danilo; Knapskog, Svein Johan. Edon-$\Cal R (256,384,512)$ -- an efficient implementation of Edon-$\Cal R$ family of cryptographic hash functions. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 219-239. http://geodesic.mathdoc.fr/item/CMUC_2008_49_2_a4/