On the structure of finite loop capable Abelian groups
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 217-224
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Loop capable groups are groups which are isomorphic to inner mapping groups of loops. In this paper we show that abelian groups $C_p^{k}\times C_p\times C_p$, where $k\geq 2$ and $p$ is an odd prime, are not loop capable groups. We also discuss generalizations of this result.
Loop capable groups are groups which are isomorphic to inner mapping groups of loops. In this paper we show that abelian groups $C_p^{k}\times C_p\times C_p$, where $k\geq 2$ and $p$ is an odd prime, are not loop capable groups. We also discuss generalizations of this result.
@article{CMUC_2007_48_2_a3,
author = {Niemenmaa, Markku},
title = {On the structure of finite loop capable {Abelian} groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {217--224},
year = {2007},
volume = {48},
number = {2},
mrnumber = {2338090},
zbl = {1174.20345},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2007_48_2_a3/}
}
Niemenmaa, Markku. On the structure of finite loop capable Abelian groups. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 217-224. http://geodesic.mathdoc.fr/item/CMUC_2007_48_2_a3/