On the regularity of local minimizers of decomposable variational integrals on domains in $\Bbb R^2$
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 321-341
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider local minimizers $u : \Bbb R^2\supset \Omega \to \Bbb R^N$ of variational integrals like $\int_\Omega [(1+|\partial_1 u|^{2})^{p/2}+(1+|\partial_2 u|^{2})^{q/2}]\,dx$ or its degenerate variant $\int_\Omega [|\partial_1 u|^p+|\partial_2 u|^q]\,dx$ with exponents $2\leq p q \infty $ which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. {\bf 16} (2003), 177--186. We prove interior $C^{1,\alpha}$- respectively $C^{1}$-regularity of $u$ under the condition that $q 2p$. For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. {\bf 31} (2006), 349--362.
We consider local minimizers $u : \Bbb R^2\supset \Omega \to \Bbb R^N$ of variational integrals like $\int_\Omega [(1+|\partial_1 u|^{2})^{p/2}+(1+|\partial_2 u|^{2})^{q/2}]\,dx$ or its degenerate variant $\int_\Omega [|\partial_1 u|^p+|\partial_2 u|^q]\,dx$ with exponents $2\leq p q \infty $ which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. {\bf 16} (2003), 177--186. We prove interior $C^{1,\alpha}$- respectively $C^{1}$-regularity of $u$ under the condition that $q 2p$. For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. {\bf 31} (2006), 349--362.
Classification :
35J35, 35J50, 49N60
Keywords: non-standard growth; vector case; local minimizers; interior regularity; problems of higher order
Keywords: non-standard growth; vector case; local minimizers; interior regularity; problems of higher order
@article{CMUC_2007_48_2_a13,
author = {Bildhauer, M. and Fuchs, M.},
title = {On the regularity of local minimizers of decomposable variational integrals on domains in $\Bbb R^2$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {321--341},
year = {2007},
volume = {48},
number = {2},
mrnumber = {2338100},
zbl = {1199.49075},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2007_48_2_a13/}
}
TY - JOUR AU - Bildhauer, M. AU - Fuchs, M. TI - On the regularity of local minimizers of decomposable variational integrals on domains in $\Bbb R^2$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 SP - 321 EP - 341 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2007_48_2_a13/ LA - en ID - CMUC_2007_48_2_a13 ER -
%0 Journal Article %A Bildhauer, M. %A Fuchs, M. %T On the regularity of local minimizers of decomposable variational integrals on domains in $\Bbb R^2$ %J Commentationes Mathematicae Universitatis Carolinae %D 2007 %P 321-341 %V 48 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_2007_48_2_a13/ %G en %F CMUC_2007_48_2_a13
Bildhauer, M.; Fuchs, M. On the regularity of local minimizers of decomposable variational integrals on domains in $\Bbb R^2$. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 321-341. http://geodesic.mathdoc.fr/item/CMUC_2007_48_2_a13/