Spaces of continuous characteristic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 599-608
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.
We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.
Classification :
54C35, 54D20, 54F05
Keywords: $C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space
Keywords: $C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space
@article{CMUC_2006_47_4_a4,
author = {Buzyakova, Raushan Z.},
title = {Spaces of continuous characteristic functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {599--608},
year = {2006},
volume = {47},
number = {4},
mrnumber = {2337414},
zbl = {1150.54017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006_47_4_a4/}
}
Buzyakova, Raushan Z. Spaces of continuous characteristic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 599-608. http://geodesic.mathdoc.fr/item/CMUC_2006_47_4_a4/