$\operatorname{Add}(U)$ of a uniserial module
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 391-398
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of $U^{(I)}$ for a uniserial module $U$. It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules.
A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of $U^{(I)}$ for a uniserial module $U$. It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules.
@article{CMUC_2006_47_3_a2,
author = {P\v{r}{\'\i}hoda, Pavel},
title = {$\operatorname{Add}(U)$ of a uniserial module},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {391--398},
year = {2006},
volume = {47},
number = {3},
mrnumber = {2281002},
zbl = {1106.16006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006_47_3_a2/}
}
Příhoda, Pavel. $\operatorname{Add}(U)$ of a uniserial module. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 391-398. http://geodesic.mathdoc.fr/item/CMUC_2006_47_3_a2/