Covering properties in countable products, II
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 491-502
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If $Y$ is a perfect subparacompact space and $\{X_n : n\in \omega \}$ is a countable collection of subparacompact Čech-scattered spaces, then the product $Y\times \prod_{n\in \omega }X_n$ is subparacompact and (2) If $\{X_n : n\in \omega \}$ is a countable collection of metacompact Čech-scattered spaces, then the product $\prod_{n\in \omega }X_n$ is metacompact.
In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If $Y$ is a perfect subparacompact space and $\{X_n : n\in \omega \}$ is a countable collection of subparacompact Čech-scattered spaces, then the product $Y\times \prod_{n\in \omega }X_n$ is subparacompact and (2) If $\{X_n : n\in \omega \}$ is a countable collection of metacompact Čech-scattered spaces, then the product $\prod_{n\in \omega }X_n$ is metacompact.
Classification :
54B10, 54D15, 54D20, 54G12
Keywords: countable product; C-scattered; Čech-scatterd; subparacompact; metacompact
Keywords: countable product; C-scattered; Čech-scatterd; subparacompact; metacompact
@article{CMUC_2006_47_3_a11,
author = {Higuchi, Sachio and Tanaka, Hidenori},
title = {Covering properties in countable products, {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {491--502},
year = {2006},
volume = {47},
number = {3},
mrnumber = {2281011},
zbl = {1150.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006_47_3_a11/}
}
Higuchi, Sachio; Tanaka, Hidenori. Covering properties in countable products, II. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 491-502. http://geodesic.mathdoc.fr/item/CMUC_2006_47_3_a11/