Baireness of $C_k(X)$ for ordered $X$
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 103-111
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that if $X$ is a subspace of a linearly ordered space, then $C_k(X)$ is a Baire space if and only if $C_k(X)$ is Choquet iff $X$ has the Moving Off Property.
We show that if $X$ is a subspace of a linearly ordered space, then $C_k(X)$ is a Baire space if and only if $C_k(X)$ is Choquet iff $X$ has the Moving Off Property.
Classification :
54C35, 54E52, 54F05
Keywords: Baire; linearly ordered space; compact-open topology; Choquet; Moving Off Property
Keywords: Baire; linearly ordered space; compact-open topology; Choquet; Moving Off Property
@article{CMUC_2006_47_1_a8,
author = {Granado, Michael and Gruenhage, Gary},
title = {Baireness of $C_k(X)$ for ordered $X$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {103--111},
year = {2006},
volume = {47},
number = {1},
mrnumber = {2223970},
zbl = {1150.54032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006_47_1_a8/}
}
Granado, Michael; Gruenhage, Gary. Baireness of $C_k(X)$ for ordered $X$. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/CMUC_2006_47_1_a8/