$\Sigma $-products of paracompact Čech-scattered spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 127-140
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma$ is a $\Sigma$-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).
In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma$ is a $\Sigma$-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).
Classification :
54B10, 54D15, 54D20, 54G12
Keywords: $\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness
Keywords: $\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness
@article{CMUC_2006_47_1_a10,
author = {Tanaka, Hidenori},
title = {$\Sigma $-products of paracompact {\v{C}ech-scattered} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {127--140},
year = {2006},
volume = {47},
number = {1},
mrnumber = {2223972},
zbl = {1150.54011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006_47_1_a10/}
}
Tanaka, Hidenori. $\Sigma $-products of paracompact Čech-scattered spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/CMUC_2006_47_1_a10/