Fréchet property in compact spaces is not preserved by $M$-equivalence
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 747-749
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An example of two $M$-equivalent (hence $l$-equivalent) compact spaces is presented, one of which is Fréchet and the other is not.
An example of two $M$-equivalent (hence $l$-equivalent) compact spaces is presented, one of which is Fréchet and the other is not.
Classification :
54C35, 54D30, 54D99, 54H11
Keywords: $l$-equivalence; $M$-equivalence; Fréchet property
Keywords: $l$-equivalence; $M$-equivalence; Fréchet property
@article{CMUC_2005_46_4_a12,
author = {Okunev, Oleg},
title = {Fr\'echet property in compact spaces is not preserved by $M$-equivalence},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {747--749},
year = {2005},
volume = {46},
number = {4},
mrnumber = {2259504},
zbl = {1121.54033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005_46_4_a12/}
}
Okunev, Oleg. Fréchet property in compact spaces is not preserved by $M$-equivalence. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 747-749. http://geodesic.mathdoc.fr/item/CMUC_2005_46_4_a12/