Stability of positive part of unit ball in Orlicz spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 413-424
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set $Q$ in a topological vector space is stable if the midpoint map $\Phi\colon Q\times Q\rightarrow Q$, $\Phi(x,y) =(x+y)/2$ is open with respect to the inherited topology in $Q$. The main theorem is established: In the Orlicz space $L^\varphi(\mu)$ the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.
The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set $Q$ in a topological vector space is stable if the midpoint map $\Phi\colon Q\times Q\rightarrow Q$, $\Phi(x,y) =(x+y)/2$ is open with respect to the inherited topology in $Q$. The main theorem is established: In the Orlicz space $L^\varphi(\mu)$ the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.
@article{CMUC_2005_46_3_a4,
author = {Grz\k{a}\'slewicz, Ryszard and Seredy\'nski, Witold},
title = {Stability of positive part of unit ball in {Orlicz} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {413--424},
year = {2005},
volume = {46},
number = {3},
mrnumber = {2174521},
zbl = {1121.52001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a4/}
}
TY - JOUR AU - Grząślewicz, Ryszard AU - Seredyński, Witold TI - Stability of positive part of unit ball in Orlicz spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 413 EP - 424 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a4/ LA - en ID - CMUC_2005_46_3_a4 ER -
Grząślewicz, Ryszard; Seredyński, Witold. Stability of positive part of unit ball in Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a4/