A note on the structure of WUR Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 399-408
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We present an example of a Banach space $E$ admitting an equivalent weakly uniformly rotund norm and such that there is no $\Phi:E\to c_0(\Gamma )$, for any set $\Gamma$, linear, one-to-one and bounded. This answers a problem posed by Fabian, Godefroy, Hájek and Zizler. The space $E$ is actually the dual space $Y^*$ of a space $Y$ which is a subspace of a WCG space.
We present an example of a Banach space $E$ admitting an equivalent weakly uniformly rotund norm and such that there is no $\Phi:E\to c_0(\Gamma )$, for any set $\Gamma$, linear, one-to-one and bounded. This answers a problem posed by Fabian, Godefroy, Hájek and Zizler. The space $E$ is actually the dual space $Y^*$ of a space $Y$ which is a subspace of a WCG space.
Classification :
03E05, 46B20, 46B26
Keywords: WCG Banach space; weakly uniformly rotund norms; tree
Keywords: WCG Banach space; weakly uniformly rotund norms; tree
@article{CMUC_2005_46_3_a2,
author = {Argyros, S. A. and Mercourakis, S.},
title = {A note on the structure of {WUR} {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {399--408},
year = {2005},
volume = {46},
number = {3},
mrnumber = {2174519},
zbl = {1123.46011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a2/}
}
Argyros, S. A.; Mercourakis, S. A note on the structure of WUR Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 399-408. http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a2/