Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 577-588
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper the special diophantine equation $\frac{q^{n}-1}{q-1}=y$ with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of $y-1$.
In this paper the special diophantine equation $\frac{q^{n}-1}{q-1}=y$ with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of $y-1$.
Classification :
11A41, 11D41, 11D45, 11D61, 11D72
Keywords: diophantine equation; Fermat and Mersenne primes; Catalan conjecture
Keywords: diophantine equation; Fermat and Mersenne primes; Catalan conjecture
@article{CMUC_2005_46_3_a17,
author = {Polick\'y, Zden\v{e}k},
title = {Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {577--588},
year = {2005},
volume = {46},
number = {3},
mrnumber = {2174534},
zbl = {1121.11031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a17/}
}
TY - JOUR
AU - Polický, Zdeněk
TI - Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
SP - 577
EP - 588
VL - 46
IS - 3
UR - http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a17/
LA - en
ID - CMUC_2005_46_3_a17
ER -
Polický, Zdeněk. Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 577-588. http://geodesic.mathdoc.fr/item/CMUC_2005_46_3_a17/