Combinatorial trees in Priestley spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 217-234
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\geq 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.
We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\geq 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.
Classification :
03C05, 06A11, 06D20, 06D50, 06D55, 54F05
Keywords: distributive lattice; Priestley duality; poset; first-order definable
Keywords: distributive lattice; Priestley duality; poset; first-order definable
@article{CMUC_2005_46_2_a1,
author = {Ball, Richard N. and Pultr, Ale\v{s} and Sichler, Ji\v{r}{\'\i}},
title = {Combinatorial trees in {Priestley} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {217--234},
year = {2005},
volume = {46},
number = {2},
mrnumber = {2176889},
zbl = {1121.06003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005_46_2_a1/}
}
TY - JOUR AU - Ball, Richard N. AU - Pultr, Aleš AU - Sichler, Jiří TI - Combinatorial trees in Priestley spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 217 EP - 234 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2005_46_2_a1/ LA - en ID - CMUC_2005_46_2_a1 ER -
Ball, Richard N.; Pultr, Aleš; Sichler, Jiří. Combinatorial trees in Priestley spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 217-234. http://geodesic.mathdoc.fr/item/CMUC_2005_46_2_a1/