A characterization of holomorphic germs on compact perfect sets
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 483-490
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $K\subseteq\Bbb C$ be a perfect compact set, $E$ a quasi-complete locally convex space over $\Bbb C$ and $f:K\to E$ a map. In this note we give a necessary and sufficient condition --- in terms of differential quotients --- for $f$ to have a holomorphic extension on a neighborhood of $K$.
Let $K\subseteq\Bbb C$ be a perfect compact set, $E$ a quasi-complete locally convex space over $\Bbb C$ and $f:K\to E$ a map. In this note we give a necessary and sufficient condition --- in terms of differential quotients --- for $f$ to have a holomorphic extension on a neighborhood of $K$.
Classification :
30B40, 46G20, 46J15, 46J40
Keywords: differential quotients; holomorphic extensions
Keywords: differential quotients; holomorphic extensions
@article{CMUC_2004_45_3_a8,
author = {Carboni, Graciela and Larotonda, Angel},
title = {A characterization of holomorphic germs on compact perfect sets},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {483--490},
year = {2004},
volume = {45},
number = {3},
mrnumber = {2103142},
zbl = {1103.46022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a8/}
}
TY - JOUR AU - Carboni, Graciela AU - Larotonda, Angel TI - A characterization of holomorphic germs on compact perfect sets JO - Commentationes Mathematicae Universitatis Carolinae PY - 2004 SP - 483 EP - 490 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a8/ LA - en ID - CMUC_2004_45_3_a8 ER -
Carboni, Graciela; Larotonda, Angel. A characterization of holomorphic germs on compact perfect sets. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 483-490. http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a8/