$\omega_1$-generated uniserial modules over chain rings
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 403-415 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three two-sided ideals, and chain rings with ``many'' two-sided ideals. We prove that there exists an $\omega_{1}$-generated uniserial module over every non-artinian nearly simple chain ring and over chain rings containing an uncountable strictly increasing (resp. decreasing) chain of right (resp. two-sided) ideals. As a consequence we describe right steady serial rings.
The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three two-sided ideals, and chain rings with ``many'' two-sided ideals. We prove that there exists an $\omega_{1}$-generated uniserial module over every non-artinian nearly simple chain ring and over chain rings containing an uncountable strictly increasing (resp. decreasing) chain of right (resp. two-sided) ideals. As a consequence we describe right steady serial rings.
Classification : 16D20, 16D25, 16D60, 16D80, 16L30, 16P70
Keywords: chain rings; serial rings; uniserial modules
@article{CMUC_2004_45_3_a2,
     author = {\v{Z}emli\v{c}ka, Jan},
     title = {$\omega_1$-generated uniserial modules over chain rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {403--415},
     year = {2004},
     volume = {45},
     number = {3},
     mrnumber = {2103136},
     zbl = {1101.16014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a2/}
}
TY  - JOUR
AU  - Žemlička, Jan
TI  - $\omega_1$-generated uniserial modules over chain rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 403
EP  - 415
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a2/
LA  - en
ID  - CMUC_2004_45_3_a2
ER  - 
%0 Journal Article
%A Žemlička, Jan
%T $\omega_1$-generated uniserial modules over chain rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 403-415
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a2/
%G en
%F CMUC_2004_45_3_a2
Žemlička, Jan. $\omega_1$-generated uniserial modules over chain rings. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 403-415. http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a2/