Note on countable unions of Corson countably compact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 499-507
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that a compact space $K$ has a dense set of $G_\delta$ points if it can be covered by countably many Corson countably compact spaces. If these Corson countably compact spaces may be chosen to be dense in $K$, then $K$ is even Corson.
We show that a compact space $K$ has a dense set of $G_\delta$ points if it can be covered by countably many Corson countably compact spaces. If these Corson countably compact spaces may be chosen to be dense in $K$, then $K$ is even Corson.
Classification :
54D30
Keywords: Corson countably compact space; $G_\delta$ point; Corson compact space; Valdivia compact space
Keywords: Corson countably compact space; $G_\delta$ point; Corson compact space; Valdivia compact space
@article{CMUC_2004_45_3_a10,
author = {Kalenda, Ond\v{r}ej F. K.},
title = {Note on countable unions of {Corson} countably compact spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {499--507},
year = {2004},
volume = {45},
number = {3},
mrnumber = {2103144},
zbl = {1098.54020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a10/}
}
Kalenda, Ondřej F. K. Note on countable unions of Corson countably compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 499-507. http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a10/