Monotonicity of the maximum of inner product norms
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 383-388
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\Bbb K$ be the field of real or complex numbers. In this note we characterize all inner product norms $p_1,\ldots ,p_m$ on $\Bbb K^n$ for which the norm $x\longmapsto \max \{p_1(x),\ldots ,p_m(x)\}$ on $\Bbb K^n$ is monotonic.
Let $\Bbb K$ be the field of real or complex numbers. In this note we characterize all inner product norms $p_1,\ldots ,p_m$ on $\Bbb K^n$ for which the norm $x\longmapsto \max \{p_1(x),\ldots ,p_m(x)\}$ on $\Bbb K^n$ is monotonic.
Classification :
15A60, 15A63, 52A21
Keywords: finite dimensional vector space; monotonic norm; absolute norm; inner pro\-duct norm
Keywords: finite dimensional vector space; monotonic norm; absolute norm; inner pro\-duct norm
@article{CMUC_2004_45_3_a0,
author = {Lavri\v{c}, Boris},
title = {Monotonicity of the maximum of inner product norms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {383--388},
year = {2004},
volume = {45},
number = {3},
mrnumber = {2103134},
zbl = {1100.15013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a0/}
}
Lavrič, Boris. Monotonicity of the maximum of inner product norms. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 383-388. http://geodesic.mathdoc.fr/item/CMUC_2004_45_3_a0/