Embedding $3$-homogeneous latin trades into abelian $2$-groups
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 191-212
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T'$ with $T'\cap T=\emptyset $ such that $(L\setminus T)\cup T'$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.
Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T'$ with $T'\cap T=\emptyset $ such that $(L\setminus T)\cup T'$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.
@article{CMUC_2004_45_2_a1,
author = {Cavenagh, Nicholas J.},
title = {Embedding $3$-homogeneous latin trades into abelian $2$-groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {191--212},
year = {2004},
volume = {45},
number = {2},
mrnumber = {2075269},
zbl = {1099.05503},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004_45_2_a1/}
}
Cavenagh, Nicholas J. Embedding $3$-homogeneous latin trades into abelian $2$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 191-212. http://geodesic.mathdoc.fr/item/CMUC_2004_45_2_a1/