On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 91-100
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider a Schrödinger-type differential expression $H_V=\nabla^*\nabla+V$, where $\nabla $ is a $C^{\infty}$-bounded Hermitian connection on a Hermitian vector bundle $E$ of bounded geometry over a manifold of bounded geometry $(M,g)$ with metric $g$ and positive $C^{\infty}$-bounded measure $d\mu$, and $V$ is a locally integrable section of the bundle of endomorphisms of $E$. We give a sufficient condition for $m$-sectoriality of a realization of $H_V$ in $L^2(E)$. In the proof we use generalized Kato's inequality as well as a result on the positivity of $u\in L^2(M)$ satisfying the equation $(\Delta _M+b)u=\nu $, where $\Delta _M$ is the scalar Laplacian on $M$, $b>0$ is a constant and $\nu\geq 0$ is a positive distribution on $M$.
We consider a Schrödinger-type differential expression $H_V=\nabla^*\nabla+V$, where $\nabla $ is a $C^{\infty}$-bounded Hermitian connection on a Hermitian vector bundle $E$ of bounded geometry over a manifold of bounded geometry $(M,g)$ with metric $g$ and positive $C^{\infty}$-bounded measure $d\mu$, and $V$ is a locally integrable section of the bundle of endomorphisms of $E$. We give a sufficient condition for $m$-sectoriality of a realization of $H_V$ in $L^2(E)$. In the proof we use generalized Kato's inequality as well as a result on the positivity of $u\in L^2(M)$ satisfying the equation $(\Delta _M+b)u=\nu $, where $\Delta _M$ is the scalar Laplacian on $M$, $b>0$ is a constant and $\nu\geq 0$ is a positive distribution on $M$.
Classification :
35J10, 35P05, 47B25, 58J05, 58J50, 81Q10
Keywords: Schrödinger operator; $m$-sectorial; manifold; bounded geometry; singular potential
Keywords: Schrödinger operator; $m$-sectorial; manifold; bounded geometry; singular potential
@article{CMUC_2004_45_1_a5,
author = {Milatovic, Ognjen},
title = {On $m$-sectorial {Schr\"odinger-type} operators with singular potentials on manifolds of bounded geometry},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {91--100},
year = {2004},
volume = {45},
number = {1},
mrnumber = {2076861},
zbl = {1127.35348},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004_45_1_a5/}
}
TY - JOUR AU - Milatovic, Ognjen TI - On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry JO - Commentationes Mathematicae Universitatis Carolinae PY - 2004 SP - 91 EP - 100 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_2004_45_1_a5/ LA - en ID - CMUC_2004_45_1_a5 ER -
%0 Journal Article %A Milatovic, Ognjen %T On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry %J Commentationes Mathematicae Universitatis Carolinae %D 2004 %P 91-100 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_2004_45_1_a5/ %G en %F CMUC_2004_45_1_a5
Milatovic, Ognjen. On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/CMUC_2004_45_1_a5/