Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 659-667
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
First we recall a Faber-Krahn type inequality and an estimate for $\lambda_p(\Omega)$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda_p(\Omega)$ converges to the Cheeger constant $h(\Omega)$ as $p\to 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega$ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset\subset\Omega$. As a byproduct we prove that for convex $\Omega$ the Cheeger set $\omega$ is also convex.
First we recall a Faber-Krahn type inequality and an estimate for $\lambda_p(\Omega)$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda_p(\Omega)$ converges to the Cheeger constant $h(\Omega)$ as $p\to 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega$ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset\subset\Omega$. As a byproduct we prove that for convex $\Omega$ the Cheeger set $\omega$ is also convex.
Classification :
35J20, 35J70, 49Q20, 49R05, 49R50, 52A38
Keywords: isoperimetric estimates; eigenvalue; Cheeger constant; $p$-Laplace operator; $1$-Laplace operator
Keywords: isoperimetric estimates; eigenvalue; Cheeger constant; $p$-Laplace operator; $1$-Laplace operator
@article{CMUC_2003_44_4_a9,
author = {Kawohl, B. and Fridman, V.},
title = {Isoperimetric estimates for the first eigenvalue of the $p${-Laplace} operator and the {Cheeger} constant},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {659--667},
year = {2003},
volume = {44},
number = {4},
mrnumber = {2062882},
zbl = {1105.35029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a9/}
}
TY - JOUR AU - Kawohl, B. AU - Fridman, V. TI - Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant JO - Commentationes Mathematicae Universitatis Carolinae PY - 2003 SP - 659 EP - 667 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a9/ LA - en ID - CMUC_2003_44_4_a9 ER -
%0 Journal Article %A Kawohl, B. %A Fridman, V. %T Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant %J Commentationes Mathematicae Universitatis Carolinae %D 2003 %P 659-667 %V 44 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a9/ %G en %F CMUC_2003_44_4_a9
Kawohl, B.; Fridman, V. Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 659-667. http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a9/