Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\Bbb R^n$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 645-658
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that, under appropriate structure conditions, the quasilinear Dirichlet problem $$ \cases -\operatorname{div}(|\nabla u|^{p-2}\nabla u) =f(x,u), \quad x\in\Omega, \ u=0, x\in\partial\Omega, \endcases $$ where $\Omega $is a bounded domain in $\Bbb R^n$, $1$, admits two positive solutions $u_{0}$, $u_{1}$ in $W_{0}^{1,p}(\Omega)$ such that $0$ in $\Omega $, while $u_{0}$ is a local minimizer of the associated Euler-Lagrange functional.
We show that, under appropriate structure conditions, the quasilinear Dirichlet problem $$ \cases -\operatorname{div}(|\nabla u|^{p-2}\nabla u) =f(x,u), \quad x\in\Omega, \ u=0, x\in\partial\Omega, \endcases $$ where $\Omega $is a bounded domain in $\Bbb R^n$, $1$, admits two positive solutions $u_{0}$, $u_{1}$ in $W_{0}^{1,p}(\Omega)$ such that $0$ in $\Omega $, while $u_{0}$ is a local minimizer of the associated Euler-Lagrange functional.
Classification :
35J20, 35J60, 35J70, 47J30
Keywords: $p$-Laplacian; positive solutions; sub- and supersolutions; local minimizers; Palais-Smale condition
Keywords: $p$-Laplacian; positive solutions; sub- and supersolutions; local minimizers; Palais-Smale condition
@article{CMUC_2003_44_4_a8,
author = {Kandilakis, Dimitrios A. and Lyberopoulos, Athanasios N.},
title = {Multiplicity of positive solutions for some quasilinear {Dirichlet} problems on bounded domains in $\Bbb R^n$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {645--658},
year = {2003},
volume = {44},
number = {4},
mrnumber = {2062881},
zbl = {1105.35311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a8/}
}
TY - JOUR AU - Kandilakis, Dimitrios A. AU - Lyberopoulos, Athanasios N. TI - Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\Bbb R^n$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2003 SP - 645 EP - 658 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a8/ LA - en ID - CMUC_2003_44_4_a8 ER -
%0 Journal Article %A Kandilakis, Dimitrios A. %A Lyberopoulos, Athanasios N. %T Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\Bbb R^n$ %J Commentationes Mathematicae Universitatis Carolinae %D 2003 %P 645-658 %V 44 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a8/ %G en %F CMUC_2003_44_4_a8
Kandilakis, Dimitrios A.; Lyberopoulos, Athanasios N. Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\Bbb R^n$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 645-658. http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a8/