Bases of minimal elements of some partially ordered free abelian groups
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 623-628
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the present paper, we will show that the set of minimal elements of a full affine semigroup $A\hookrightarrow \Bbb N^k_0$ contains a free basis of the group generated by $A$ in $\Bbb Z^k$. This will be applied to the study of the group $\text{\rm K}_0(R)$ for a semilocal ring $R$.
In the present paper, we will show that the set of minimal elements of a full affine semigroup $A\hookrightarrow \Bbb N^k_0$ contains a free basis of the group generated by $A$ in $\Bbb Z^k$. This will be applied to the study of the group $\text{\rm K}_0(R)$ for a semilocal ring $R$.
Classification :
06F20, 16D40, 16D70, 16E20, 20F60, 20M14
Keywords: full affine semigroups; partially ordered abelian groups; semilocal rings; direct sum decompositions
Keywords: full affine semigroups; partially ordered abelian groups; semilocal rings; direct sum decompositions
@article{CMUC_2003_44_4_a5,
author = {P\v{r}{\'\i}hoda, Pavel},
title = {Bases of minimal elements of some partially ordered free abelian groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {623--628},
year = {2003},
volume = {44},
number = {4},
mrnumber = {2062878},
zbl = {1101.16010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a5/}
}
Příhoda, Pavel. Bases of minimal elements of some partially ordered free abelian groups. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 623-628. http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a5/