On minimal-$\alpha$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 727-740
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An $\alpha$-space is a topological space in which the topology is generated by the family of all $\alpha$-sets (see [N]). In this paper, minimal-$\alpha\Cal P$-spaces (where $\Cal P$ denotes several separation axioms) are investigated. Some new characterizations of $\alpha$-spaces are also obtained.
An $\alpha$-space is a topological space in which the topology is generated by the family of all $\alpha$-sets (see [N]). In this paper, minimal-$\alpha\Cal P$-spaces (where $\Cal P$ denotes several separation axioms) are investigated. Some new characterizations of $\alpha$-spaces are also obtained.
Classification :
54A05, 54A10, 54D25, 54D80
Keywords: $\alpha$-space; $\alpha T_i$-space; minimal-$\alpha T_i$ space; $T_2$-closed space; minimal-$T_2$ space; $\psi$-space
Keywords: $\alpha$-space; $\alpha T_i$-space; minimal-$\alpha T_i$ space; $T_2$-closed space; minimal-$T_2$ space; $\psi$-space
@article{CMUC_2003_44_4_a16,
author = {Lo Faro, G. and Nordo, G. and Porter, J. R.},
title = {On minimal-$\alpha$-spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {727--740},
year = {2003},
volume = {44},
number = {4},
mrnumber = {2062889},
zbl = {1097.54003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a16/}
}
Lo Faro, G.; Nordo, G.; Porter, J. R. On minimal-$\alpha$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 727-740. http://geodesic.mathdoc.fr/item/CMUC_2003_44_4_a16/