An inequality in Orlicz function spaces with Orlicz norm
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 507-514
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We use Simonenko quantitative indices of an $\Cal N$-function $\Phi$ to estimate two parameters $q_\Phi$ and $Q_\Phi$ in Orlicz function spaces $L^\Phi[0,\infty)$ with Orlicz norm, and get the following inequality: $\frac{B_\Phi}{B_\Phi-1}\leq q_\Phi\leq Q_\Phi\leq \frac{A_\Phi}{A_\phi-1}$, where $A_\Phi$ and $B_\Phi$ are Simonenko indices. A similar inequality is obtained in $L^\Phi [0,1]$ with Orlicz norm.
We use Simonenko quantitative indices of an $\Cal N$-function $\Phi$ to estimate two parameters $q_\Phi$ and $Q_\Phi$ in Orlicz function spaces $L^\Phi[0,\infty)$ with Orlicz norm, and get the following inequality: $\frac{B_\Phi}{B_\Phi-1}\leq q_\Phi\leq Q_\Phi\leq \frac{A_\Phi}{A_\phi-1}$, where $A_\Phi$ and $B_\Phi$ are Simonenko indices. A similar inequality is obtained in $L^\Phi [0,1]$ with Orlicz norm.
Classification :
46B20, 46E30
Keywords: Orlicz spaces; Simonenko indices; $\triangle_2$-condition
Keywords: Orlicz spaces; Simonenko indices; $\triangle_2$-condition
@article{CMUC_2003_44_3_a8,
author = {Wang, Jincai},
title = {An inequality in {Orlicz} function spaces with {Orlicz} norm},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {507--514},
year = {2003},
volume = {44},
number = {3},
mrnumber = {2025816},
zbl = {1103.46011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a8/}
}
Wang, Jincai. An inequality in Orlicz function spaces with Orlicz norm. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 507-514. http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a8/