The Poisson integral for a ball in spaces of constant curvature
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 437-460
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We present explicit expressions of the Poisson kernels for geodesic balls in the higher dimensional spheres and real hyperbolic spaces. As a consequence, the Dirichlet problem for the projective space is explicitly solved. Comparison of different expressions for the same Poisson kernel lead to interesting identities concerning special functions.
We present explicit expressions of the Poisson kernels for geodesic balls in the higher dimensional spheres and real hyperbolic spaces. As a consequence, the Dirichlet problem for the projective space is explicitly solved. Comparison of different expressions for the same Poisson kernel lead to interesting identities concerning special functions.
Classification :
31C12, 33C90, 35J25
Keywords: Poisson integral; Poisson kernel; Dirichlet problem; harmonic function; Riemannian manifold; hypergeometric function
Keywords: Poisson integral; Poisson kernel; Dirichlet problem; harmonic function; Riemannian manifold; hypergeometric function
@article{CMUC_2003_44_3_a4,
author = {Symeonidis, Eleutherius},
title = {The {Poisson} integral for a ball in spaces of constant curvature},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {437--460},
year = {2003},
volume = {44},
number = {3},
mrnumber = {2025812},
zbl = {1127.31302},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a4/}
}
Symeonidis, Eleutherius. The Poisson integral for a ball in spaces of constant curvature. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 437-460. http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a4/