The limit lemma in fragments of arithmetic
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 565-568
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The recursion theoretic limit lemma, saying that each function with a $\varSigma_{n+2}$ graph is a limit of certain function with a $\varDelta_{n+1}$ graph, is provable in $\text{\rm B}\Sigma_{n+1}$.
The recursion theoretic limit lemma, saying that each function with a $\varSigma_{n+2}$ graph is a limit of certain function with a $\varDelta_{n+1}$ graph, is provable in $\text{\rm B}\Sigma_{n+1}$.
Classification :
03D20, 03D55, 03F30
Keywords: limit lemma; fragments of arithmetic; collection scheme
Keywords: limit lemma; fragments of arithmetic; collection scheme
@article{CMUC_2003_44_3_a13,
author = {\v{S}vejdar, V{\'\i}t\v{e}zslav},
title = {The limit lemma in fragments of arithmetic},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {565--568},
year = {2003},
volume = {44},
number = {3},
mrnumber = {2025821},
zbl = {1098.03067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a13/}
}
Švejdar, Vítězslav. The limit lemma in fragments of arithmetic. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 565-568. http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a13/