On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 531-554
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\bold P$ be a porosity-like relation on a separable locally compact metric space $E$. We show that the $\sigma$-ideal of compact $\sigma$-$\bold P$-porous subsets of $E$ (under some general conditions on $\bold P$ and $E$) forms a $\boldsymbol \Pi_{\bold 1}^{\bold 1}$-complete set in the hyperspace of all compact subsets of $E$, in particular it is coanalytic and non-Borel. Our general results are applicable to most interesting types of porosity. It is shown in the cases of the $\sigma$-ideals of $\sigma$-porous sets, $\sigma$-$\langle g \rangle$-porous sets, $\sigma$-strongly porous sets, $\sigma$-symmetrically porous sets and $\sigma$-strongly symmetrically porous sets. We prove a similar result also for $\sigma$-very porous sets assuming that each singleton of $E$ is very porous set.
Let $\bold P$ be a porosity-like relation on a separable locally compact metric space $E$. We show that the $\sigma$-ideal of compact $\sigma$-$\bold P$-porous subsets of $E$ (under some general conditions on $\bold P$ and $E$) forms a $\boldsymbol \Pi_{\bold 1}^{\bold 1}$-complete set in the hyperspace of all compact subsets of $E$, in particular it is coanalytic and non-Borel. Our general results are applicable to most interesting types of porosity. It is shown in the cases of the $\sigma$-ideals of $\sigma$-porous sets, $\sigma$-$\langle g \rangle$-porous sets, $\sigma$-strongly porous sets, $\sigma$-symmetrically porous sets and $\sigma$-strongly symmetrically porous sets. We prove a similar result also for $\sigma$-very porous sets assuming that each singleton of $E$ is very porous set.
Classification :
28A05, 54H05, 54H25
Keywords: $\sigma $-porous sets; $\sigma $-ideal; coanalytic sets; Hausdorff metric
Keywords: $\sigma $-porous sets; $\sigma $-ideal; coanalytic sets; Hausdorff metric
@article{CMUC_2003_44_3_a11,
author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k and Zelen\'y, Miroslav},
title = {On the complexity of some $\sigma$-ideals of $\sigma${-P-porous} sets},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {531--554},
year = {2003},
volume = {44},
number = {3},
mrnumber = {2025819},
zbl = {1099.54029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a11/}
}
TY - JOUR AU - Zajíček, Luděk AU - Zelený, Miroslav TI - On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets JO - Commentationes Mathematicae Universitatis Carolinae PY - 2003 SP - 531 EP - 554 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a11/ LA - en ID - CMUC_2003_44_3_a11 ER -
Zajíček, Luděk; Zelený, Miroslav. On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 531-554. http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a11/