Open maps do not preserve Whyburn property
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 525-530
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that a (weakly) Whyburn space $X$ may be mapped continuously via an open map $f$ onto a non (weakly) Whyburn space $Y$. This fact may happen even between topological groups $X$ and $Y$, $f$ a homomorphism, $X$ Whyburn and $Y$ not even weakly Whyburn.
We show that a (weakly) Whyburn space $X$ may be mapped continuously via an open map $f$ onto a non (weakly) Whyburn space $Y$. This fact may happen even between topological groups $X$ and $Y$, $f$ a homomorphism, $X$ Whyburn and $Y$ not even weakly Whyburn.
@article{CMUC_2003_44_3_a10,
author = {Obersnel, Franco},
title = {Open maps do not preserve {Whyburn} property},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {525--530},
year = {2003},
volume = {44},
number = {3},
mrnumber = {2025818},
zbl = {1098.54008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a10/}
}
Obersnel, Franco. Open maps do not preserve Whyburn property. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 525-530. http://geodesic.mathdoc.fr/item/CMUC_2003_44_3_a10/