Biharmonic Green domains in a Riemannian manifold
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 359-365
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.
Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.
@article{CMUC_2003_44_2_a13,
author = {Othman, S. I. and Anandam, V.},
title = {Biharmonic {Green} domains in a {Riemannian} manifold},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {359--365},
year = {2003},
volume = {44},
number = {2},
mrnumber = {2026170},
zbl = {1127.31301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_2_a13/}
}
Othman, S. I.; Anandam, V. Biharmonic Green domains in a Riemannian manifold. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 359-365. http://geodesic.mathdoc.fr/item/CMUC_2003_44_2_a13/