Products of $k$-spaces, and questions
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 335-345
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
As is well-known, every product of a locally compact space with a $k$-space is a $k$-space. But, the product of a separable metric space with a $k$-space need not be a $k$-space. In this paper, we consider conditions for products to be $k$-spaces, and pose some related questions.
As is well-known, every product of a locally compact space with a $k$-space is a $k$-space. But, the product of a separable metric space with a $k$-space need not be a $k$-space. In this paper, we consider conditions for products to be $k$-spaces, and pose some related questions.
Classification :
54B10, 54B15, 54D50, 54D55
Keywords: $k$-space; sequential space; strongly Fr'{e}chet space; bi-$k$-space; strongly sequential space; Tanaka space
Keywords: $k$-space; sequential space; strongly Fr'{e}chet space; bi-$k$-space; strongly sequential space; Tanaka space
@article{CMUC_2003_44_2_a11,
author = {Tanaka, Yoshio},
title = {Products of $k$-spaces, and questions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {335--345},
year = {2003},
volume = {44},
number = {2},
mrnumber = {2026168},
zbl = {1100.54006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003_44_2_a11/}
}
Tanaka, Yoshio. Products of $k$-spaces, and questions. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 335-345. http://geodesic.mathdoc.fr/item/CMUC_2003_44_2_a11/