Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 565-573
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For natural numbers $r$ and $n\geq 2$ all natural operators $T_{\vert \Cal M f_n}\rightsquigarrow T^* (J^rT^{*})$ transforming vector fields from $n$-manifolds $M$ into $1$-forms on $J^r T^{*}M=\{j^r_x (\omega)\mid \omega \in \Omega^1(M), x\in M\}$ are classified. A similar problem with fibered manifolds instead of manifolds is discussed.
For natural numbers $r$ and $n\geq 2$ all natural operators $T_{\vert \Cal M f_n}\rightsquigarrow T^* (J^rT^{*})$ transforming vector fields from $n$-manifolds $M$ into $1$-forms on $J^r T^{*}M=\{j^r_x (\omega)\mid \omega \in \Omega^1(M), x\in M\}$ are classified. A similar problem with fibered manifolds instead of manifolds is discussed.
@article{CMUC_2002_43_3_a16,
author = {Mikulski, W. M.},
title = {Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {565--573},
year = {2002},
volume = {43},
number = {3},
mrnumber = {1920532},
zbl = {1090.58005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002_43_3_a16/}
}
TY - JOUR AU - Mikulski, W. M. TI - Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 565 EP - 573 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_2002_43_3_a16/ LA - en ID - CMUC_2002_43_3_a16 ER -
Mikulski, W. M. Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 565-573. http://geodesic.mathdoc.fr/item/CMUC_2002_43_3_a16/