A new rank formula for idempotent matrices with applications
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 379-384
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is shown that $$ \text{\rm rank}(P^*AQ) = \text{\rm rank}(P^*A) + \text{\rm rank}(AQ) - \text{\rm rank}(A), $$ where $A$ is idempotent, $[P,Q]$ has full row rank and $P^*Q = 0$. Some applications of the rank formula to generalized inverses of matrices are also presented.
It is shown that $$ \text{\rm rank}(P^*AQ) = \text{\rm rank}(P^*A) + \text{\rm rank}(AQ) - \text{\rm rank}(A), $$ where $A$ is idempotent, $[P,Q]$ has full row rank and $P^*Q = 0$. Some applications of the rank formula to generalized inverses of matrices are also presented.
Classification :
15A03, 15A09
Keywords: Drazin inverse; group inverse; idempotent matrix; inner inverse; rank; tripotent matrix
Keywords: Drazin inverse; group inverse; idempotent matrix; inner inverse; rank; tripotent matrix
@article{CMUC_2002_43_2_a14,
author = {Tian, Yongge and Styan, George P. H.},
title = {A new rank formula for idempotent matrices with applications},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {379--384},
year = {2002},
volume = {43},
number = {2},
mrnumber = {1922135},
zbl = {1090.15001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002_43_2_a14/}
}
TY - JOUR AU - Tian, Yongge AU - Styan, George P. H. TI - A new rank formula for idempotent matrices with applications JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 379 EP - 384 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2002_43_2_a14/ LA - en ID - CMUC_2002_43_2_a14 ER -
Tian, Yongge; Styan, George P. H. A new rank formula for idempotent matrices with applications. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 379-384. http://geodesic.mathdoc.fr/item/CMUC_2002_43_2_a14/