Metrics with homogeneous geodesics on flag manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 189-199
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A geodesic of a homogeneous Riemannian manifold $(M=G/K, g)$ is called homogeneous if it is an orbit of an one-parameter subgroup of $G$. In the case when $M=G/H$ is a naturally reductive space, that is the $G$-invariant metric $g$ is defined by some non degenerate biinvariant symmetric bilinear form $B$, all geodesics of $M$ are homogeneous. We consider the case when $M=G/K$ is a flag manifold, i.e\. an adjoint orbit of a compact semisimple Lie group $G$, and we give a simple necessary condition that $M$ admits a non-naturally reductive invariant metric with homogeneous geodesics. Using this, we enumerate flag manifolds of a classical Lie group $G$ which may admit a non-naturally reductive $G$-invariant metric with homogeneous geodesics.
A geodesic of a homogeneous Riemannian manifold $(M=G/K, g)$ is called homogeneous if it is an orbit of an one-parameter subgroup of $G$. In the case when $M=G/H$ is a naturally reductive space, that is the $G$-invariant metric $g$ is defined by some non degenerate biinvariant symmetric bilinear form $B$, all geodesics of $M$ are homogeneous. We consider the case when $M=G/K$ is a flag manifold, i.e\. an adjoint orbit of a compact semisimple Lie group $G$, and we give a simple necessary condition that $M$ admits a non-naturally reductive invariant metric with homogeneous geodesics. Using this, we enumerate flag manifolds of a classical Lie group $G$ which may admit a non-naturally reductive $G$-invariant metric with homogeneous geodesics.
Classification :
03E25, 14M15, 53C22, 53C30
Keywords: homogeneous Riemannian spaces; homogeneous geodesics; flag manifolds
Keywords: homogeneous Riemannian spaces; homogeneous geodesics; flag manifolds
@article{CMUC_2002_43_2_a0,
author = {Alekseevsky, Dmitri and Arvanitoyeorgos, Andreas},
title = {Metrics with homogeneous geodesics on flag manifolds},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {189--199},
year = {2002},
volume = {43},
number = {2},
mrnumber = {1922121},
zbl = {1090.53044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002_43_2_a0/}
}
TY - JOUR AU - Alekseevsky, Dmitri AU - Arvanitoyeorgos, Andreas TI - Metrics with homogeneous geodesics on flag manifolds JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 189 EP - 199 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_2002_43_2_a0/ LA - en ID - CMUC_2002_43_2_a0 ER -
Alekseevsky, Dmitri; Arvanitoyeorgos, Andreas. Metrics with homogeneous geodesics on flag manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 189-199. http://geodesic.mathdoc.fr/item/CMUC_2002_43_2_a0/