On the convergence of certain sums of independent random elements
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 77-81
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this note we investigate the relationship between the convergence of the sequence $\{S_{n}\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n}\varepsilon_{i}x_{i}$ (where $\varepsilon_{i}$ takes the values $\pm\,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \Bbb N$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty}x_{n}$.
In this note we investigate the relationship between the convergence of the sequence $\{S_{n}\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n}\varepsilon_{i}x_{i}$ (where $\varepsilon_{i}$ takes the values $\pm\,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \Bbb N$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty}x_{n}$.
Classification :
46B09, 46B15, 60B12
Keywords: independent random elements; copy of $c_{0}$; Pettis integrable function; perfect measure space
Keywords: independent random elements; copy of $c_{0}$; Pettis integrable function; perfect measure space
@article{CMUC_2002_43_1_a6,
author = {Ferrando, J. C.},
title = {On the convergence of certain sums of independent random elements},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {77--81},
year = {2002},
volume = {43},
number = {1},
mrnumber = {1903308},
zbl = {1090.46009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002_43_1_a6/}
}
Ferrando, J. C. On the convergence of certain sums of independent random elements. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 77-81. http://geodesic.mathdoc.fr/item/CMUC_2002_43_1_a6/