An example of a $\Cal C^{1,1}$ function, which is not a d.c. function
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 149-154
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.
Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.
@article{CMUC_2002_43_1_a11,
author = {Zelen\'y, Miroslav},
title = {An example of a $\Cal C^{1,1}$ function, which is not a d.c. function},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {149--154},
year = {2002},
volume = {43},
number = {1},
mrnumber = {1903313},
zbl = {1090.46012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002_43_1_a11/}
}
TY - JOUR
AU - Zelený, Miroslav
TI - An example of a $\Cal C^{1,1}$ function, which is not a d.c. function
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
SP - 149
EP - 154
VL - 43
IS - 1
UR - http://geodesic.mathdoc.fr/item/CMUC_2002_43_1_a11/
LA - en
ID - CMUC_2002_43_1_a11
ER -
Zelený, Miroslav. An example of a $\Cal C^{1,1}$ function, which is not a d.c. function. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 149-154. http://geodesic.mathdoc.fr/item/CMUC_2002_43_1_a11/