Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 655-663
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $r,s,q, m,n\in \Bbb N$ be such that $s\geq r\leq q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on \linebreak $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\Bbb R)_0)^*$ instead of $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are solved.
Let $r,s,q, m,n\in \Bbb N$ be such that $s\geq r\leq q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on \linebreak $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\Bbb R)_0)^*$ instead of $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are solved.
Classification :
53A55, 58A20
Keywords: bundle functors; natural transformations; natural affinors
Keywords: bundle functors; natural transformations; natural affinors
@article{CMUC_2001_42_4_a6,
author = {Mikulski, W{\l}odzimierz M.},
title = {Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {655--663},
year = {2001},
volume = {42},
number = {4},
mrnumber = {1883375},
zbl = {1090.58501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a6/}
}
Mikulski, Włodzimierz M. Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 655-663. http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a6/