Characterizations of almost transitive superreflexive Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 629-636
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space $X$ means that, for every element $u$ in the unit sphere of $X$, we have $$ \limsup _{\Vert h\Vert \rightarrow 0} \frac{\Vert u+h\Vert +\Vert u-h\Vert -2}{\Vert h\Vert}=2. $$ We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity.
Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space $X$ means that, for every element $u$ in the unit sphere of $X$, we have $$ \limsup _{\Vert h\Vert \rightarrow 0} \frac{\Vert u+h\Vert +\Vert u-h\Vert -2}{\Vert h\Vert}=2. $$ We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity.
Classification :
46B04, 46B10, 46B22
Keywords: convex transitive; almost transitive; superreflexive; uniformly smooth; rough norm
Keywords: convex transitive; almost transitive; superreflexive; uniformly smooth; rough norm
@article{CMUC_2001_42_4_a2,
author = {Guerrero, Julio Becerra and Palacios, Angel Rodriguez},
title = {Characterizations of almost transitive superreflexive {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {629--636},
year = {2001},
volume = {42},
number = {4},
mrnumber = {1883371},
zbl = {1150.46003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a2/}
}
TY - JOUR AU - Guerrero, Julio Becerra AU - Palacios, Angel Rodriguez TI - Characterizations of almost transitive superreflexive Banach spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 629 EP - 636 VL - 42 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a2/ LA - en ID - CMUC_2001_42_4_a2 ER -
%0 Journal Article %A Guerrero, Julio Becerra %A Palacios, Angel Rodriguez %T Characterizations of almost transitive superreflexive Banach spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 629-636 %V 42 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a2/ %G en %F CMUC_2001_42_4_a2
Guerrero, Julio Becerra; Palacios, Angel Rodriguez. Characterizations of almost transitive superreflexive Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 629-636. http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a2/