Selections on $\Psi$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 763-769
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that if $\Cal A$ is an uncountable AD (almost disjoint) family of subsets of $\omega$ then the space $\Psi(\Cal A)$ does not admit a continuous selection; moreover, if $\Cal A$ is maximal then $\Psi(\Cal A)$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
We show that if $\Cal A$ is an uncountable AD (almost disjoint) family of subsets of $\omega$ then the space $\Psi(\Cal A)$ does not admit a continuous selection; moreover, if $\Cal A$ is maximal then $\Psi(\Cal A)$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
Classification :
03E05, 54B20, 54C65
Keywords: MAD family; Vietoris topology; continuous selection
Keywords: MAD family; Vietoris topology; continuous selection
@article{CMUC_2001_42_4_a15,
author = {Hru\v{s}\'ak, M. and Szeptycki, P. J. and Tomita, A. H.},
title = {Selections on $\Psi$-spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {763--769},
year = {2001},
volume = {42},
number = {4},
mrnumber = {1883384},
zbl = {1090.54506},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a15/}
}
Hrušák, M.; Szeptycki, P. J.; Tomita, A. H. Selections on $\Psi$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 763-769. http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a15/