Relative exact covers
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 601-607
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Recently Rim and Teply [11] found a necessary condition for the existence of $\sigma$-torsionfree covers with respect to a given hereditary torsion theory for the category $R$-mod. This condition uses the class of $\sigma$-exact modules; i.e. the $\sigma$-torsionfree modules for which every its $\sigma$-torsionfree homomorphic image is $\sigma$-injective. In this note we shall show that the existence of $\sigma$-torsionfree covers implies the existence of $\sigma$-exact covers, and we shall investigate some sufficient conditions for the converse.
Recently Rim and Teply [11] found a necessary condition for the existence of $\sigma$-torsionfree covers with respect to a given hereditary torsion theory for the category $R$-mod. This condition uses the class of $\sigma$-exact modules; i.e. the $\sigma$-torsionfree modules for which every its $\sigma$-torsionfree homomorphic image is $\sigma$-injective. In this note we shall show that the existence of $\sigma$-torsionfree covers implies the existence of $\sigma$-exact covers, and we shall investigate some sufficient conditions for the converse.
Classification :
16D50, 16D90, 16S90, 18E40
Keywords: precover; cover; hereditary torsion theory $\sigma $; $\sigma $-injective module; $\sigma $-exact module; $\sigma $-pure submodule
Keywords: precover; cover; hereditary torsion theory $\sigma $; $\sigma $-injective module; $\sigma $-exact module; $\sigma $-pure submodule
@article{CMUC_2001_42_4_a0,
author = {Bican, Ladislav and Torrecillas, Blas},
title = {Relative exact covers},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {601--607},
year = {2001},
volume = {42},
number = {4},
mrnumber = {1883369},
zbl = {1068.16039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a0/}
}
Bican, Ladislav; Torrecillas, Blas. Relative exact covers. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 601-607. http://geodesic.mathdoc.fr/item/CMUC_2001_42_4_a0/