Distributional chaos on tree maps: the star case
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 583-590
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\Bbb X =\{z\in \Bbb C:z^n\in [0,1]\}$, $n\in \Bbb N$, and let $f:\Bbb X \rightarrow \Bbb X$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.
Let $\Bbb X =\{z\in \Bbb C:z^n\in [0,1]\}$, $n\in \Bbb N$, and let $f:\Bbb X \rightarrow \Bbb X$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.
Classification :
37B40, 37D45, 37E25, 54H20
Keywords: distributional chaos; topological entropy; star maps
Keywords: distributional chaos; topological entropy; star maps
@article{CMUC_2001_42_3_a16,
author = {C\'anovas, Jose S.},
title = {Distributional chaos on tree maps: the star case},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {583--590},
year = {2001},
volume = {42},
number = {3},
mrnumber = {1860247},
zbl = {1052.37032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001_42_3_a16/}
}
Cánovas, Jose S. Distributional chaos on tree maps: the star case. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 583-590. http://geodesic.mathdoc.fr/item/CMUC_2001_42_3_a16/